The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  2  1 X^2+2  0  X  1
 0  X  0  X  2  2 X+2 X+2 X^2 X^2+X X^2 X^2+X X^2+2 X^2+X+2 X^2+2 X^2+X+2  0  X  2 X^2+X X^2 X^2+X  X  0 X^2 X^2+X+2  2 X+2 X^2 X+2 X^2 X^2+X+2  0 X^2+2 X^2+X  X X^2+2  0 X^2+X  X X^2+X  2 X^2  X X^2+X  0 X^2+2  X X^2+2 X^2+2  X X^2+X+2  0 X^2+X X^2+X+2 X^2+2  0  X X+2 X^2+X X^2 X+2  2  0 X^2+2  0  2 X^2+2 X^2+X X^2+X+2  X  2 X^2+X+2 X^2+2 X^2+X+2  2 X+2 X^2+X+2 X^2+X+2  0 X^2+2  2 X+2  X X^2+X  0  X X+2  2  X  X X+2
 0  0  X  X X^2 X^2+X+2 X^2+X X^2+2 X^2 X^2+X  X  0  0  X X^2+X+2 X^2+2  0  X X^2+X+2 X^2+2 X^2+X  2 X^2+X+2 X^2 X^2+2 X^2+X X+2 X^2  X  0  2 X+2  2 X+2 X^2+X X^2 X^2 X+2  X  2  2 X^2+X  0 X^2+X X^2 X^2+2 X^2+X X+2 X^2+X  0  0 X^2+X+2 X^2+X+2 X+2  2 X^2 X+2 X+2 X^2+2 X^2 X+2 X^2+X+2  0 X^2 X+2 X^2+2  2  X X^2+X+2 X^2 X^2+2 X+2 X^2+X+2 X^2+X+2  2 X^2  2  X X+2 X^2+X+2  2 X^2+X X^2+X X^2+X  0 X+2 X^2  X  X X^2+X+2 X+2 X+2
 0  0  0  2  2  2  0  2  0  2  2  2  2  0  0  0  2  0  0  2  2  0  2  0  2  0  2  0  0  2  0  2  2  0  0  2  0  2  2  0  2  0  2  2  0  0  2  0  0  0  2  2  2  0  0  2  0  2  0  2  2  0  0  2  2  2  0  0  2  2  0  0  0  2  2  0  0  2  0  0  2  2  2  0  0  2  2  0  2  2  2  2

generates a code of length 92 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 88.

Homogenous weight enumerator: w(x)=1x^0+127x^88+106x^89+279x^90+228x^91+635x^92+204x^93+233x^94+88x^95+92x^96+10x^97+39x^98+4x^99+1x^100+1x^174

The gray image is a code over GF(2) with n=736, k=11 and d=352.
This code was found by Heurico 1.16 in 1 seconds.